PUF-8 negatively regulates RAS/MAPK signalling to promote differentiation of C. elegans germ cells

نویسندگان

  • Samir Vaid
  • Mohd Ariz
  • Amaresh Chaturbedi
  • Ganga Anil Kumar
  • Kuppuswamy Subramaniam
چکیده

Signals that promote germ cell self-renewal by preventing premature meiotic entry are well understood. However, signals that control mitotic proliferation to promote meiotic differentiation have not been well characterized. In Caenorhabditis elegans, GLP-1 Notch signalling promotes the proliferative fate by preventing premature meiotic entry. The germline niche cell, which is the source of the ligand for GLP-1, spatially restricts GLP-1 signalling and thus enables the germ cells that have moved away from the niche to enter meiosis. Here, we show that the suppression of RAS/MAP kinase signalling in the mitotic and meiotic-entry regions is essential for the regulation of the mitosis-meiosis switch by niche signalling. We provide evidence that the conserved PUF family RNA-binding protein PUF-8 and the RAS GAP protein GAP-3 function redundantly to suppress the LET-60 RAS in the mitotic and meiotic entry regions. Germ cells missing both PUF-8 and GAP-3 proliferate in an uncontrolled fashion and fail to undergo meiotic development. MPK-1, the MAP kinase downstream of the LET-60 RAS, is prematurely activated in these cells; downregulation of MPK-1 activation eliminates tumours and restores differentiation. Our results further reveal that PUF-8 negatively regulates LET-60 expression at a post-transcriptional step. LET-60 is misexpressed in the puf-8(-) mutant germlines and PUF-8 physically interacts with the let-60 3' UTR. Furthermore, PUF-8 suppresses let-60 3' UTR-mediated expression in the germ cells that are transitioning from the mitotic to meiotic fate. These results reveal that PUF-8-mediated inhibition of the RAS/MAPK pathway is essential for mitotic-to-meiotic fate transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct roles of the Pumilio and FBF translational repressors during C. elegans vulval development.

The C. elegans PUF and FBF proteins regulate various aspects of germline development by selectively binding to the 3' untranslated region of their target mRNAs and repressing translation. Here, we show that puf-8, fbf-1 and fbf-2 also act in the soma where they negatively regulate vulvaI development. Loss-of-function mutations in puf-8 cause ectopic vulval differentiation when combined with mut...

متن کامل

Conserved Regulation of MAP Kinase Expression by PUF RNA-Binding Proteins

Mitogen-activated protein kinase (MAPK) and PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work, we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cell...

متن کامل

The C. elegans G-protein-coupled receptor SRA-13 inhibits RAS/MAPK signalling during olfaction and vulval development.

In C. elegans, the RAS/MAPK pathway is used in different tissues to regulate various cell fate decisions. Several positive and negative regulators tightly control the activity of the RAS/MAPK pathway at different steps. We demonstrate a link between a G-protein-coupled receptor signalling pathway and the RAS/MAPK cascade. SRA-13, a member of the SRA family of chemosensory receptors, negatively ...

متن کامل

PUF-8, a Pumilio Homolog, Inhibits the Proliferative Fate in the Caenorhabditis elegans Germline

Stem cell populations are maintained by keeping a balance between self-renewal (proliferation) and differentiation of dividing stem cells. Within the Caenorhabditis elegans germline, the key regulator maintaining this balance is the canonical Notch signaling pathway, with GLP-1/Notch activity promoting the proliferative fate. We identified the Pumilio homolog, PUF-8, as an inhibitor of the prol...

متن کامل

Ribosome Synthesis and MAPK Activity Modulate Ionizing Radiation-Induced Germ Cell Apoptosis in Caenorhabditis elegans

Synthesis of ribosomal RNA by RNA polymerase I (RNA pol I) is an elemental biological process and is key for cellular homeostasis. In a forward genetic screen in C. elegans designed to identify DNA damage-response factors, we isolated a point mutation of RNA pol I, rpoa-2(op259), that leads to altered rRNA synthesis and a concomitant resistance to ionizing radiation (IR)-induced germ cell apopt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 140  شماره 

صفحات  -

تاریخ انتشار 2013